Lesson 17. Profit Maximization

1 Overview

- In Lesson 16, we saw an example of a profit maximization problem
- A company produces and sells two products
- Prices are exogenously determined
- How much of each product should the company produce in order to maximize its profit?
- This lesson: what if the company is free to charge whatever price they wish?

2 Incorporating demand into profit maximization

- Consider a company that produces and sells three products
- The company can set the price of these products
- The demand for these products depends on their prices
- Variables:

$$
\begin{array}{lll}
R=\text { revenue } & Q_{1}=\text { quantity of product } 1 \text { produced and sold } & P_{1}=\text { unit price of product } 1 \\
C=\text { cost } & Q_{2}=\text { quantity of product } 2 \text { produced and sold } & P_{2}=\text { unit price of product } 2 \\
& Q_{3}=\text { quantity of product } 3 \text { produced and sold } & P_{3}=\text { unit price of product } 3
\end{array}
$$

- Model:

$$
\begin{array}{cl}
\operatorname{maximize} & R-C \\
\text { subject to } & R=P_{1} Q_{1}+P_{2} Q_{2}+P_{3} Q_{3} \\
& C=20+15\left(Q_{1}+Q_{2}+Q_{3}\right) \\
& Q_{1}=\frac{63}{4}-\frac{1}{4} P_{1} \\
& Q_{2}=21-\frac{1}{5} P_{2} \\
& Q_{3}=\frac{25}{2}-\frac{1}{6} P_{3}
\end{array}
$$

- Let's determine what the company needs to produce and sell in order to maximize profit

Step 0. Simplify the model

- First, let's simplify the model by expressing profit π as a function of Q_{1}, Q_{2} and Q_{3}
- Let's start by solving for P_{i} in terms of $Q_{i}(i=1,2,3)$:
- Now we can express R as a function of Q_{1}, Q_{2}, Q_{3} by substitution:
- Next, we can express profit π as a function of Q_{1}, Q_{2}, Q_{3} by substitution as well:
- Now, let's maximize π

Step 1. Find the critical points

- The gradient of π is
\square
- The first-order necessary condition tells us that critical points of π must satisfy
\square
- Therefore, we have one critical point of π :
\square

Step 2. Classify each critical point as a local minimum, local maximum, or saddle point

- The Hessian matrix of π is
- The Hessian matrix of π at the critical point $\left(Q_{1}, Q_{2}, Q_{3}\right)=(6,9,5)$ is
- The principal minors of the Hessian at $\left(Q_{1}, Q_{2}, Q_{3}\right)=(6,9,5)$ are
\square
- Therefore, the second derivative test tells us that
- So, the company's locally optimal production plan and profit is:
\square

3 Exercises

Problem 1. Supppose we have a company that manufactures two products that are sold in the same market. The company has a monopoly and may charge whatever prices it wishes. Let

$$
\begin{array}{lll}
R=\text { revenue } & Q_{1}=\text { quantity of product } 1 \text { produced and sold } & P_{1}=\text { unit price of product } 1 \\
C=\text { cost } & Q_{2}=\text { quantity of product } 2 \text { produced and sold } & P_{2}=\text { unit price of product } 2
\end{array}
$$

Assume that the demand of the two products depends on their prices as follows:

$$
\begin{aligned}
& Q_{1}=40-2 P_{1}+P_{2} \\
& Q_{2}=15+P_{1}-P_{2}
\end{aligned}
$$

In addition, assume the cost of production is $C=Q_{1}^{2}+Q_{1} Q_{2}+Q_{2}^{2}$. How much of each product should the company manufacture in order to maximize total profit?

